Ab initiomethods for finite-temperature two-dimensional Bose gases
نویسندگان
چکیده
منابع مشابه
Strongly interacting two-dimensional Bose gases.
We prepare and study strongly interacting two-dimensional Bose gases in the superfluid, the classical Berezinskii-Kosterlitz-Thouless (BKT) transition, and the vacuum-to-superfluid quantum critical regimes. A wide range of the two-body interaction strength 0.05 < g < 3 is covered by tuning the scattering length and by loading the sample into an optical lattice. Based on the equations of state m...
متن کاملVortex pairing in two-dimensional Bose gases
Recent experiments on ultracold Bose gases in two dimensions have provided evidence for the existence of the Berezinskii-Kosterlitz-Thouless (BKT) phase via analysis of the interference between two independent systems. In this work we study the two-dimensional quantum degenerate Bose gas at finite temperature using the projected Gross-Pitaevskii equation classical field method. Although this de...
متن کاملFermi-Bose mapping for one-dimensional Bose gases
One-dimensional Bose gases are considered, interacting either through the hardcore potentials or through the contact delta potentials. Interest in these gases gained momentum because of the recent experimental realization of quasi-one-dimensional Bose gases in traps with tightly confined radial motion, achieving the Tonks-Girardeau (TG) regime of strongly interacting atoms. For such gases the F...
متن کاملSuperfluid-insulator transition of two-dimensional disordered Bose gases
We study the two-dimensional weakly repulsive Bose gas at zero temperature in the presence of correlated disorder. Using large-scale simulations, we show that the low-energy Bogoliubov cumulative density of states remains quadratic up to a critical disorder strength, beyond which a power law with disorder-dependent exponent β < 2 sets in. We associate this threshold behavior with the transition...
متن کاملSuperfluid transition of homogeneous and trapped two-dimensional Bose gases.
Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2012
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.86.033610